PREPARATION OF 2,2-DIMETHYL-5-R-1,3-DIOXANE-4,6-DIONE DERIVATIVES

Josef Prousek

Department of Environmental Chemistry and Technology, Slovak Technical University, 812 37 Bratislava

> Received September 10, 1990 Accepted October 9, 1990

From the synthetic viewpoint, Meldrum's acid¹ (I) and its derivatives serve most often in preparation of arylidene condensation products², i.e. compounds that have a strongly polarized double bond. We have now synthesized new derivatives II (Scheme 1) by reaction of Meldrum's acid (I) with the corresponding aldehydes

RCH=0 +
$$O$$
 CH₃ RCH O CH₃

RCH= O CH₃

RCH= O CH₃

RCH= O CH₃
 O CH₃

SCHEME 1

EXPERIMENTAL

Melting points were measured on a Kofler block and are uncorrected. IR spectra (cm⁻¹) were measured by the KBr technique (Table II). Meldrum's acid (I) was prepared according to ref.¹ in 63% yield; m.p. 94-95°C (acetone) (reported¹ m.p. 94-95°C), reflux in chloroform solution being the method of choice. In most cases the products separated already during the reaction.

2,2-Dimethyl-5-R-1,3-dioxane-4,6-diones (IIa-IIg)

Acetic acid (0.2 ml) and piperidine (0.1 ml) were added to a stirred solution of I(1.44 g, 0.01 mol) and the corresponding aldehyde (0.011 mol) in chloroform (10 ml). After reflux for 1-2 h, the reaction mixture was cooled and set aside overnight. The separated precipitate of compound II

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

TABLE I 2,2-Dimethyl-5-R-1,3-dioxane-4,6-diones (*IIa-IIg*)

Compound Yield, %	Formula M.w.	M.p., °C	Calculated/Found		
		Solvent ^a	% C	% Н	% N
IIa	$C_{17}H_{13}ON_{7}$	224-225	59-47	3.82	4.08
74	343-3	E	59.52	3.91	4.20
IIb	$C_{17}H_{13}NO_7$	196-198	59.47	3.82	4.08
74	343-3	E	59·25	3.76	3.98
II c	$C_{17}H_{13}NO_{7}$	160161	59-47	3.82	4.08
59	343-3	E	59.58	3.96	4.15
IId	$C_{17}H_{13}CIO_5$	107—108	61.36	3.94	
32	332.7	b	61.42	4.01	
IIe	$C_{17}H_{13}CISO_4$	187 — 188	58-53	3.75	
58	348.8	E	58.69	3.82	
$I\!I\!f$	$C_{14}H_{12}O_{6}$	171-172	60.86	4.38	
83	272.2	СН-Е	60.80	4.36	
IIg	$C_{16}H_{11}O_{6}$	193-194	67.60	4.26	
63	284.3	СН	67.51	4.23	

^a E ethanol, CH chloroform, CH-E (1:1); ^b purified by column chromatography (silica gel, benzene-acetone 9:1) and crystallization from ethanol.

TABLE II IR spectra $(\tilde{\nu}, \text{cm}^{-1}, \text{KBr pellet})$ of derivatives IIa-IIg

Compound	C=0	C==C	NO_2	C —O	Other bands
IIa	1 734 1 728	1 635 1 628	1 528 1 385	1 035	1 718, 1 701, 1 653, 1 645, 1 076
IIb	1 795 1 713	1 580 1 572	1 528 1 345	1 043 1 034	1 560, 1 394, 1 269, 1 200
IIc	1 711	1 572	1 535 1 369	1 043 1 032	1 383, 1 284, 1 255, 1 232, 1 215, 1 204
IId	1 720	1 589		1 034 1 011	1 300, 1 269, 1 204, 1 092
IIe	1 734 1 705	1 564		1 032 1 005	1 391, 1 385, 1 300, 1 198, 1 080
IIf	1 711	1 562 1 555	_	1 099 1 034	1 455, 1 186
IIg	1 722	1 663 1 603	· <u> </u>	1 034 1 009	1 288, 1 232

was collected, washed with cold chloroform, dried and purified by crystallization or column chromatography (Table I).

The author is indebted to Mrs S. Markusová for the IR spectral measurements.

REFERENCES

- 1. Davidson D., Bernhard S. A.: J. Am. Chem. Soc. 70, 3426 (1948).
- 2. Schuster P., Polansky O. E., Wessely F.: Monatsh. Chem. 95, 53 (1964).

Translated by M. Tichý.